
1.  
2.  
3.  
4.  

5.  
6.  

7.  

Loops - display multi line/element data

Use screen elements loops to display array results of filters and API requests on an app screen. A loop can iterate on a single key/value, like - a name; or 
on a multiple ones, like - a name, date of birth, avatar picture, etc.

Common example of such arrays is a list of items in a shopping cart or a list of payments.

The platform allows to create loops and display results over:

DATA FROM FILTERS
DATA FROM OPERATIONS
DATA FROM LISTS OF TABLES

In both these examples we will take the following steps:

Set up data source: Filter or Operation
Set up loop that will parse the data from the data source
Call the loop reference and extract its' data into an app's screen

DATA FROM FILTERS

At the  Filter's section we have created  filter that shows users with Gmail account & with the age less than specified. Now, we create a Loop to AgeEmail
display Name and Age of all the filtered records.

Steps to take:

Navigate to Constructor
Create new screen by clicking  at the bottom of the platformAdd New Screen
Drag and Drop Text Input element
Set its' properties:

 as Backendname Age
 as Default Value #Variable:age#

Drag and Drop Button element
Set its' properties:

 as Backendname Button
 as Caption Button Less than Age #Backendname:Age#

Click  button and  from drop down:Actions Add new action

 with the   and  . Click Set variable Name: Age Value: #Backendname:Age# Save
Add  action. Select  and in  drop down select the screen you are on now. This will reload the page. Go to Screen Choose screen
Otherwise the filter results will not be updated.

Before proceeding, make sure you know, how basic adding elements in Constructor works, PLUS:

  , as this section is heavy on referencing data points,Hashtags
  , as Loops need a source of data and Filters are the most commonly used one.Automatic Data Filters

https://docs.mobsted.com/display/KB/Filters+for+Objects%2C+Events%2C+Table+Lists
https://docs.mobsted.com/display/KB/Data+references+in+app
https://docs.mobsted.com/display/KB/Filters+for+Objects%2C+Events%2C+Table+Lists


8. Drag and Drop Text element to the screen

9. Set it's text: Filtered Data:

10. Drag and Drop another Text element

11. Enable looping for that element - find  in the right hand side menu and check  boxLOOP Enabled

12. Set up   where  is the name of our FilterData Source: #ObjectsFilter:AgeEmail:Data#, AgeEmail

13. Enter  Loop Name: AgeEmailLoop, it need a name to be referenced

14. Go to  field of the element on the app screen, and set up what will be displayed by pulling the required Object columns from the loop:Text

a) to display Name use Employee:#Loop:AgeEmailLoop:objects@Name#

b) to display Age use Age:#Loop:AgeEmailLoop:objects@Age#



15. Click Save Screen

16. Click  button to launch app from the screen to check it works.Preview

DATA FROM OPERATIONS

WHERE

#Loop:LOOPNAME:objects@COLUMN-NAME#

 - points that data must be taken from a Loop and iterated#LOOP
 - sets a name of Loop to be used as sourceLOOPNAME

 - points at which data point to pull from the  to displayObjects@column-name Object

Other properties that can be referenced are:

backend@COLUMN_NAME - for Events
statuses@COLUMN_NAME - for  of EventsStatuses

You can have a look at how it's setup in  in your account, screen - .Demo App Filters Iterate

https://docs.mobsted.com/display/KB/App+users+-+Objects
https://docs.mobsted.com/display/KB/Events+of+Users-Objects
https://docs.mobsted.com/display/KB/Statuses+of+Events


1.  
2.  

a.  
b.  
c.  

3.  
4.  

a.  
b.  

5.  
6.  
7.  

8.  
9.  

10.  

a.  
b.  

We have a screen, where a user can select a country from the drop down and see its' public holidays. For this example, we have pre-created API 
Operation to the 3rd party service.

Steps to take:

Drag and Drop a Select element
Use  and create a list of countries:Add Option

 =   = Label USA Value US
 =   = Label Canada Value CA
 =   = Label Brazil Value BR

Drag and Drop Button element
Set it's properties:

 Backendname = holidaysButton
 Caption Button = Check Holidays

Click  select  and add pre-created  operationActions, Execute Operations Holiday
Drag and Drop Text element
Enable looping for that element: find  in the right hand side menu and check  boxLOOP Enabled

Set up  for the loop: Data Source #Operation:Holiday:Response:Result:0:response:holidays#
 the loop as Name Holidays

Go to  field of the element and set up what will be displayed by pulling the required array elements from the loop (OPERATION):Text

#Loop:Holidays:name#
#Loop:Holidays:date:iso#

11. Click  button to launch app from the screen to check it works.Preview

WHERE

Referencing INTERNAL data points is different compared to EXTERNAL or API delivered data:

We only use at sign "@" to reference INTERNAL, such as Object's properties - #Loop:LOOPNAME: # objects@COLUMN-NAME
When referencing Operations or external APIs, we use colons only - # :ARRAY_KEY_N#), where Loop:LOOPNAME:ARRAY_KEY_1 RED
is required and:

Loopname - references, which Loops to use as source,
Array_Key_1 - name of a key in array, returned by an Operation, to extract value from
Array_Key_N - if the needed Key contains another "internal" array, reference that "nested" array's keys with a : colon



You can take a look at how it's implemented in  in your account, screen - .Demo App 13 Operation Loop Screen

DATA FROM LISTS OF TABLES

You can loop any data from any of your custom Lists of Tables. Pulling data arrays from lists of tables is available anywhere, where there is a Loop, 
including on slider components, etc etc. 

For example, using existing tables in you Task Manager sample app, we can do this to show all languages available for it's users, which are stored in table 
named "languagelist" and in column named "language"

You can take a look at how it's actually  implemented in  in your account, screen - .Demo App Operation Loop Screen



1.  
2.  
3.  

a.  
b.  
c.  

4.  
5.  

a.  
b.  
c.  

Steps taken in this example:

A button added to a screen
Enable  on the button, marked Loop purple 
Insert a hashtag with the List you want to use as , marked , as example, , where:Data Source green #List:languages:languagelist#

 = a command to address lists of tables in hashtagList
 = a name of a list we have in this sample applanguages

 = a name of the actual table you are referring tolanguagelist 
, as how it can be referred later on, marked Name the Loop red , for example - ShowAllLanguages

Refer to this named Loop in any place of a button, in this case in Caption section - #Loop:ShowAllLanguages:language# , where:

 = a command to show that some data needs to be pulled from the LoopLoop
 = a name of the loop we have given beforeShowAllLangues

 = an exact column name, which you are pulling from the list and need to iterate. language 



Filters for Objects, Events, Table Lists

View and Manage Sub-Accounts

Create Sub-Accounts Manually

Send Push to Android and iOS

Create Sub-Accounts by API

There is a reason why there is an extra step, from DECLARING the Loop's source and using it's data on screen in form of a Loop's name. This 
allows to declare and name more then one data source for the same iteration (inserting row in row and declaring loop on each of them) and 
refer to the exact needed data point later to show more complex data. 

https://docs.mobsted.com/display/KB/Filters+for+Objects%2C+Events%2C+Table+Lists
https://docs.mobsted.com/display/KB/View+and+Manage+Sub-Accounts
https://docs.mobsted.com/display/KB/Create+Sub-Accounts+Manually
https://docs.mobsted.com/display/KB/Send+Push+to+Android+and+iOS
https://docs.mobsted.com/display/KB/Create+Sub-Accounts+by+API

	Loops - display multi line/element data

